3.3.2. Методы планирования эксперимента


Планирование эксперимента – раздел математической статистики, изучающий рациональную организацию измерений, подверженных случайным ошибкам. 

Обычно рассматривается следующая схема планирования эксперимента. Со случайными ошибками измеряется функция f (, x), зависящая от неизвестных параметров (вектора ) и от переменных x, которые по выбору экспериментатора могут принимать значения из некоторого допустимого множества X. 

Целью эксперимента является обычно либо оценка всех или некоторых параметров  или их функций, либо проверка некоторых гипотез о параметрах 

Исходя из цели эксперимента, формулируется критерий оптимальности плана эксперимента. Под планом эксперимента понимается совокупность значений, задаваемых переменным  х в эксперименте. 

Как правило, оценки параметров  ищут по методу наименьших квадратов, а гипотезы о параметрах  проверяют с помощью F-критерия Фишера  ввиду оптимальных свойств этих методов. В обоих случаях при этом оказывается естественным выбирать в качестве критерия оптимальности плана с заданным числом экспериментов некоторую функцию от дисперсий и коэффициентов корреляции оценок методом наименьших квадратов. Отметим, что в случае, когда f (, x) линейно зависит от , оптимальный план часто можно построить до проведения эксперимента, в других случаях уточнение плана эксперимента происходит по ходу эксперимента.

  Для иллюстрации рассмотрим определение весов   трёх грузов на весах с двумя чашками, если результат m-го эксперимента есть разность веса содержимого второй и первой чашки плюс случайная ошибка  со средним 0 и дисперсией D2, т.е.


,


если i-й груз был на kim-й чашке в m-м эксперименте, и x = 0, если i-й груз не взвешивался в m-м эксперименте. Взвесив каждый груз отдельно п раз (3n экспериментов), мы оценим его вес по методу наименьших квадратов величиной


,


с дисперсией  D2n. При n = 8 той же точности мы достигнем после взвешивания по одному разу всех 8 различных комбинаций грузов, в которых каждый из них лежит либо на одной, либо на другой чашке, причём оценка по методу наименьших квадратов даётся формулой


.


i = 1, 2, 3.


Начало планированию эксперимента положили труды английского статистика Р. Фишера (1935), подчеркнувшего, что рациональное планирование эксперимента даёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. Можно выделить следующие направления планирования эксперимента.

Исторически первое из них, факторное, было связано с агробиологическими применениями дисперсионного анализа, что нашло отражение в сохранившейся терминологии. Здесь функция f (, х) зависит от вектора х переменных (факторов) с конечным числом возможных значений и характеризует сравнительный эффект значений каждого фактора и комбинаций разных факторов. Алгебраическими и комбинаторными методами были построены интуитивно привлекательные планы, одновременно и сбалансированным образом изучающие влияние по возможности большого числа факторов. Впоследствии было доказано, что построенные планы оптимизируют некоторые естественные характеристики оценок метода наименьших квадратов.

  Следующим под влиянием приложений в химии и технике развивалось планирование эксперимента по поиску оптимальных условий протекания того или иного процесса. По существу эти методы являются модификацией обычных численных методов поиска экстремума с учётом случайных ошибок измерений.

  Специфическими методами обладает планирование отсеивающих экспериментов, в которых нужно выделить те компоненты вектора х, которые сильнее всего влияют на функцию (, x), что важно на начальной стадии исследования, когда вектор  х имеет большую размерность.

  В 60-х гг. 20 в. сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей. Разработаны также итерационные алгоритмы планирования эксперимента, дающие во многих случаях удовлетворительное численное решение задачи планирования эксперимента.

 Рассмотренный пример показывает, что даже простые эксперименты могут быть спланированы с получением дополнительной полезной информации. Серьезные экспериментальные исследования со многими критериями качества и входными величинами без планирования эксперимента просто невозможны. С усложнением экспериментов эффективность их планирования возрастает. Объектом исследования с применением теории планирования эксперимента могут быть любые процессы, устройства или их отдельные элементы.

Входные величины объектов исследования могут качественно отличаться друг от друга, поэтому в теории планирования эксперимента входные параметры принято именовать общим названием факторы.

Выходные величины также могут быть качественно различными – они получили название отклик (функция цели, параметр оптимизации).

Модель объекта представляет собой аналитическую зависимость отклика от факторов. Чаще всего эта зависимость неизвестна, известными являются факторы xi и выходные величины отклика yi. Часто встречается задача исследования одной выходной величины у как функции нескольких факторов:


  yj = φj (x1x2, ... xk).                                                                     (3.1)


Вид этой зависимости определяется из физической сущности, а численные значения коэффициентов вычисляются в соответствии с результатами эксперимента. Поэтому модель называют также эмпирической. Следует отметить, что модель объекта может быть построена исходя из теоретически обоснованного понимания сущности происходящих процессов. Созданную таким образом модель называют теоретической.

Планирование эксперимента позволяет решать следующие задачи: отыскание экстремума отклика; определение модели объекта, исследование механизма физического явления и т.п.

Исследовать механизм явления означает определить аналитическое выражение

yj = fj (x1x2, ... xk),                                                                       (3.2)


которое достаточно точно описывало бы неизвестную зависимость (3.1) в пределах области возможных значений факторов Xi, называемую областью определения факторов Ω.

Методы факторного анализа. Область определения двух факторов х1х2 называется двухфакторным пространством, а эксперимент – двухфакторным экспериментом. Могут быть также одно- и многофакторные эксперименты. Эксперименты, направленные на раскрытие механизма исследуемого явления и определяющие аналитическую зависимость, называют также интерполяционными или регрессионными. Эксперименты, позволяющие находить экстремум отклика в области его определения, называют экстремальными.

Сведения о действующих факторах и факторном пространстве во многом определяют план эксперимента. Начинают планирование эксперимента с определения количества действующих факторов и влияния их на выходную величину у, устанавливают зависимость факторов между собой, уточняют, какие из факторов являются управляемыми по заданию экспериментатора, а какие неуправляемыми и, наконец, следует учитывать точность измерительной аппаратуры, используемой для измерения значений факторов x1x2, ... xn и отклика уj. Как правило, точность измерения факторов должна быть примерно на порядок выше, чем точность измерения отклика.

Факторы следует выбирать такими, чтобы они были независимыми. Если же между некоторыми из них имеется функциональная, или корреляционная связь, то из них следует выбрать один фактор.

Наибольшее распространение получили планы экспериментов 2k, 2k–p, планы второго порядка, а в последние десятилетия многофакторные регулярные планы. При двухфакторном эксперименте его область ωs определяется двумя выбранными значениями (уровнями) каждого из факторов – минимальным и максимальным или, как их еще называют, верхним и нижним.

Методы дисперсионного анализа.  Очень важно с самого начала планирования эксперимента определить интервал варьирования факторов, т.е. величины их верхнего и нижнего значений. На выбор интервала, а, следовательно, и на значение области ωk влияют несколько обстоятельств. Снизу значение интервала ограничено точностью измерения факторов. Интервал варьирования каждого из факторов должен примерно на порядок превышать погрешность их измерения. Ограничение интервала сверху определяется условием, чтобы при переходе от одной области ωs к другой ωs+1 вершины любой области ωs не выходили бы за пределы факторного пространства Ω. Максимальное значение интервала также ограничено областью определения факторов Ω. Наиболее важным является требование адекватности модели, т.е. аппроксимирующая функция (3.2) должна достаточно точно приближаться к зависимости (3.1). Существуют критерии проверки условия адекватности, применяемые после проведения экспериментов и использующие дисперсионный анализ и другие методы математической статистики.

Методы регрессионного анализа. Если каждому значению независимой переменной х соответствует определенное значение у, то между ними имеет место детерминированная связь. Если же между х и у существует связь, но не вполне определенная, так что одному значению х соответствует совокупность значений у в виде статистического ряда, то такую связь называют регрессионной, или корреляционной, т.е. регрессионные зависимости характеризуются статистическим видом связи. Экспериментально установить такую зависимость можно путем проведения эксперимента и использования регрессионного анализа.

Модель процесса или объекта в этом случае представляет собой регрессионное выражение (3.2), связывающее факторы с откликом. В теории планирования эксперимента стремятся представить модели в виде конечной суммы степенного ряда. Для одного фактора линейная модель имеет вид – y = b0 + b1x, квадратичная модель – у = b0 + b1x + b2x2 и т.д. Процедура вычисления коэффициентов регрессии и составляет основную часть регрессионного анализа.

Полным факторным называется такой эксперимент, в котором реализуются все возможные комбинации (наборы) уровней факторов между собой. Варьирование n факторов на двух уровнях дает 2n наборов, на трех уровнях составляет 3n наборов и т.д. Если имеется n факторов, каждый из которых устанавливается на q уровнях, то для реализации полного факторного эксперимента требуется выполнить т = qn опытов. При q > 2 резко возрастает количество наборов, а, следовательно, и опытов в проводимом эксперименте, поэтому такие планы используются чрезвычайно редко.

С увеличением количества факторов число опытов в полном факторном эксперименте быстро растет. При этом некоторые опыты имеют незначительное влияние на общий результат. Если модель объекта представлена линейным полиномом, можно для вычисления коэффициентов регрессии существенно уменьшить необходимое количество опытов, пользуясь методом дробного факторного эксперимента. В соответствии с этим методом используется лишь часть матрицы полного факторного эксперимента, например 1/2, 1/4 – так называемые полуреплика или 1/4-реплика. Соответственно во столько же раз уменьшается количество проводимых опытов.